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Introduction

The purpose of this project is to exploit high density single nucleotide polymorphism (SNP)
assays to map genes for breast cancer in clusters of cases related through large extended
pedigrees. The central idea is to search for long runs of markers where cases share a
common allele. Unusually long runs indicate regions where the cases share a segment of
chromosome identical by descent from a common ancestor. If sharing of such a segment is
sufficiently rare by chance, the segment becomes a candidate as a region containing a gene
for breast cancer. The probability that a random segment reaches or exceeds the length
of the longest observed shared segment can be assessed by simulation. One of the major
challenges in this project is to properly account for linkage disequilibrium, (LD), that is,
the fact that in high density marker panels the alleles at nearby markers are correlated.
Conventional methods generally assume no correlation between markers, however, this will
lead to improper assessment of the statistical significance of the observed shared regions. As
well as analyzing the high density data collected under this project, we expect the methods
and programs we develop to be applicable in similar study designs for other diseases.



Body

Aim 1: collection of data

The first aim in the statement of work is to obtain genome wide SNP data for selected
cases in three high risk breast cancer pedigrees. Of the original 28 women identified for
genotyping, 3 samples was found to be unavailable but the others were all successfully
genotyped. At the time of the original proposal an assay of 110,000 SNPs was the standard
panel, but we expected that a panel of 550,000 would be available at the time of assay. In
fact, the current standard assay has more than 1,000,000 SNPs, and this is the data that
we received from [llumina in May 2008. This data has been downloaded and installed on
our systems and initial data checks and summary statistics have been computed.

We have also downloaded and analyzed sets of control data from the publicly available
HapMap project. These data sets include dense SNP marker data for unrelated groups of
60 Europeans, 60 Africans, 45 Chinese and 45 Japanese individuals. We have found that
roughly 95% of the markers assayed in our sample have also been assayed on these control
data sets. The data from the common markers from our sample and controls have been
extracted and put into a common format for further analysis. Initial analysis of the control
data has found some interesting anomalies as described below.

Aim 2: statistical developments

A major challenge in this project is to develop statistical methods to account for LD
between the SNP markers in our analysis. The original paper describing our method of
shared genomic segment analysis has recently been published (Thomas et al. 2008). In this
we showed, using a rudimentary model for LD, that LD as expected leads to longer runs
of shared alleles than would be seen under linkage equilibrium. Statistical significance, or
p-values, assessed under the assumption of linkage equilibrium would therefore be more
extreme than appropriate and lead to false positive results. In previous work, the principal
investigator had developed the use of graphical models to represent LD in a range of genetic
mapping situations (Thomas & Camp 2004, Thomas 2005, Thomas 2007). These methods,
however, were computationally demanding and not directly scalable to the numbers of
SNPs in the current assays. This led to the development of estimation of models in a
restricted class of graphical models, namely those with interval conditional independence
graphs. This work is currently in press (Thomas 2008a). This model restriction was shown
to have little negative effect on the implied haplotype probabilities, but enables models on
far larger numbers of markers to be considered. The current implementation can handle at
least 20,000 markers, but there is still scope for further computational improvements and
development of these is currently underway. Programs implementing these methods have
been written as described below.

Before the genotyping accomplished under this project became available we made sev-
eral trial analyses of existing data we had previously obtained on other pedigrees using
110,000 SNP assays. In analyzing these data sets we found two regions, one on chromo-



some 5 and one on chromosome 18, that showed excessive runs of loci at which there were
shared alleles. Unexpectedly, however, we found the same runs shared in high risk prostate
cancer pedigrees and also in melanoma pedigrees. We therefore repeated the analysis on
the HapMap European control data and found the same regions shared there also. The
regions were not, however, shared in the African, Chinese, or Japanese samples. Clearly,
these regions are not candidates for prostate or melanoma susceptibility genes but features
common to Europeans. While it is far from obvious what the reasons for these anomalies
are, further analysis suggests that sharing in the chromosome 18 region is due to a combi-
nation of low recombination rate and low levels of genetic variation. This does not explain
the sharing seen on chromosome 5, however, and our current belief is that this may be
due to a duplication of the region that is common in Europeans, but not seen in the other
control populations. A manuscript describing this preliminary analysis and discussing the
possible reasons is currently in preparation (Cai et al. 2008). This value of this initial
analysis is that failing to identify and explain these anomalies would have lead to false
positive results.

Aim 3: software development

Several programs have been written to analyze and evaluate shared genomic regions. These
have been written by the principal investigator and use standard input formats for genetic
data. The programs have been written in Java and so will run in Windows, Mac, Unix
and Linux environments. These have not been made publicly available yet, but will be
following further testing and development. The programs are:

e Shags.java: This finds the shared genomic segments, or shags, in a set of individuals.
While our project will focus on relatives, the program will also run on unrelated
population samples. This is a development of previous prototype programs, but has
been changed to allow input using the standard LINKAGE format for genetic data.

e SimShags.java: This simulates data to match that analyzed using the above Shags.java
program using a multi locus gene-drop approach. It allows simulations to be made
under the assumption of linkage equilibrium, which is appropriate for sparse marker
maps, but it also allows the input of a graphical model for LD from which the hap-
lotypes of the founders of the pedigree can be generated. The genetic data is again
input using the LINKAGE format.

e IntervalHapGraph.java: This is a special case implementation of the principle
investigator’s HapGraph program that implements the restriction to graphical models
with interval conditional independence graphs as described above. Running this
program on control data, from HapMap for instance, will give a graphical model for
LD that can then be input to SimShags.java. Again, genetic data is input using the
LINKAGE format. Further development of this program to increase computational
efficiency and the number of markers handled is currently underway.



Aim 4: data analysis and publication

This is expected to occur, as originally planned, in the coming year. The data and programs
required are in place. Initial formatting of case and control data has occurred and initial
data checking has been performed.

Of particular interest in the planned analysis will be an evaluation of the effects of LD
on the distribution of shared genomic run length.



Key research accomplishments

Publication of Thomas et al. (2008) the original paper outlining the method of genetic
mapping by shared genomic segments.

Publication of Thomas (2008a) a paper describing algorithmic methods that allow
linkage disequilibrium models to be computed for large numbers of genetic loci.

Preparation of manuscript Cai et al. (2008) describing statistical anomalies found in
genome wide analyses of dense SNP data. This work has also been submitted for
presentation at the International Genetic Epidemiology Society meeting, St Louis,
September 2008.

Genotype assay for 1,000,000 SNP markers on 25 breast cancer cases in three high
risk pedigrees completed.

Programs for computing shared genomic regions written and tested.
Programs for simulating shared genomic regions in pedigrees written and tested.

Extensions to simulation programs that allow simulation to be made under the as-
sumption of linkage disequilibrium, and programs to estimate linkage disequilibrium
models for large numbers of loci written and tested.



Reportable outcomes
e Thomas et al. (2008) published.
e Thomas (2008a) published.
e Poster presented at the 2008 Era of Hope meeting, Baltimore (Thomas 2008b).

e Presentation on Cai et al. (2008) submitted to International Genetic Epidemiology
Society meeting, St Louis, September 2008.



Conclusion

The project has proceeded largely as planned. Although 3 of the planned cases were not
able to be sampled we do not see this as greatly impacting future work and analysis. The
availability of 1,000,000 SNP assays in place of the expected 500,000 SNP assays is a bonus
that will allow more precise localization of recombination events, although it will make the
computation more demanding. The program developments and preliminary analyses have
been successful to date and we are now in a good position to carry out the remainder of
the project.
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Shared Genomic Segment Analysis. Mapping Disease
Predisposition Genes in Extended Pedigrees Using SNP

Genotype Assays

A. Thomas’, N. J. Camp, J. M. Farnham, K. Allen-Brady and L. A. Cannon-Albright

Department of Biomedical Informatics, University of Utah

Summary

We examine the utility of high density genotype assays for predisposition gene localization using extended pedigrees.

Results for the distribution of the number and length of genomic segments shared identical by descent among relatives

previously derived in the context of genomic mismatch scanning are reviewed in the context of dense single nucleotide

polymorphism maps. We use long runs of loci at which cases share a common allele identically by state to localize

hypothesized predisposition genes. The distribution of such runs under the hypothesis of no genetic eftect is evaluated

by simulation. Methods are illustrated by analysis of an extended prostate cancer pedigree previously reported to show

significant linkage to chromosome 1p23. Our analysis establishes that runs of simple single locus statistics can be powerful,

tractable and robust for finding DNA shared between relatives, and that extended pedigrees offer powerful designs for

gene detection based on these statistics.

Keywords: Candidate region, identity by descent, identity by state, prostate cancer, pedigree analysis.

Introduction

The recently developed ability to genotype dense single
nucleotide polymorphism (SNP) marker sets on accurate
analytical platforms, coupled with relatively inexpensive
costs and high efficiency is changing the nature of genetic
analysis. As SNPs are far more abundant than conventional
micro satellite markers, they have the capacity to give more
precise and sure localization (Kruglyak 1997). To date, anal-
yses of dense SNP genome wide scans using pedigree data
have been accomplished by linkage approaches, however,
for even moderately sized pedigrees multi locus linkage
analysis is tractable only by Markov chain Monte Carlo
methods (Thomas et al. 2000; Wijsman et al. 2006), and
the number of loci in current SNP assays creates an im-
mense computational burden. In addition to this, the sen-
sitivity of linkage analysis to linkage disequilibrium (LD)
(John et al. 2004; Amos et al. 2006) and the difficulties of
modeling LD in linkage analysis, even by Markov chain

" Corresponding author. A. Thomas, Genetic Epidemiology, 391
Chipeta Way Suite D, Salt Lake City, UT 84108, USA,
+1 801 587 9303 (voice), +1 801 581 6052 (fax). E-mail:
alun@genepi.med.utah.edu.
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Monte Carlo integration (Thomas 2007), make alternative
approaches very attractive.

Rather than the complete likelihood approach for ar-
bitrarily structured pedigrees that linkage analysis accom-
plishes, we consider only sets of cases related by a single
common ancestor or ancestral couple. Localization is based
on the assumption that regions shared identically by de-
scent (IBD) from a common ancestor indicate regions that
are likely candidates for a predisposing gene. Since regions
shared IBD must also be shared identically by state (IBS),
runs of loci at which individuals share a common allele
will tend to be longer when there is underlying IBD than
when there is not. We develop this into a simple approach
for localizing predisposition genes for a trait segregating
in an extended pedigree. The distribution of runs of IBS
loci, and hence statistical significance tests, are evaluated by
simulation.

We briefly review relevant literature on IBD sharing in
pedigrees, outline our IBS statistic and tests, and illustrate
our approach with the analysis of a SNP assay of 109,299
loci for 8 related prostate cancer cases taken from an ex-
tended Utah family previously reported to give a lod score
of 3.1 for linkage to chromosome 1p23. We discuss the
implications of our approach and, in particular, the future
work needed for further development.

Annals of Human Genetics (2008) 72,279-287 279
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Methods

IBD sharing in pedigrees

There is considerable literature on IBD sharing in statistical genet-
ics, beginning with Fisher’s junction theory (Fisher 1949, 1954),
a junction being defined as a point on a chromosome where
DNA inherited from two distinct ancestral chromosomes meets.
Donnelly (1983) modeled the common inheritance of ances-
tral chromosomal segments as a random walk over the vertices
of a hypercube, where each dimension corresponds to a meio-
sis in the pedigree. Particular states such as, for example, where
descendants share a segment IBD, correspond to particular sets
of vertices. Cannings (2003) also derived results for this model.
Houwen et al. (1994) and Heath et al. (2001) both used relatively
isolated founder populations to identify a small number of dis-
tantly related cases who shared common chromosomal segments,
which they used to map disease genes. However, neither of these
approaches incorporated precise pedigree relationships between
cases in their methodology and both used micro satellite markers
which bypasses the complexity of dense SNP maps. Chapman &
Thompson (2002) and te Meerman & Van der Meulen (1997)
examined the length of an ancestral chromosomal segment in
founder populations and found that the segment length is de-
pendent on time since founder population, population growth,
genetic drift, limited negative selection, and population subdivi-
sion.

Using preliminary work of Sanda & Ford (1986), Nelson et al.
(1993) developed techniques and analysis methods for molecu-
lar genomic mismatch scanning (GMS). In GMS, long stretches
of hybridized DNA from two related individuals identify IBD
regions. When several pairs of individuals affected by a disease
share the same IBD region, it becomes a candidate region for a
shared disease predisposition gene. Thomas et al. (1994) extended
statistical analyses of GMS data from IBD sharing for two related
individuals to IBD sharing among multiple affected individuals
in a pedigree. Although the GMS method has clear implications
for gene mapping, it never realized its potential because the labo-
ratory procedures are complex, subject to substantial background
noise, and not suitable for scaling to high throughput systems.
With the recent availability of dense SNP assays, however, al-
lelic differences that are indirectly assayed in GMS can be directly
assayed using SNP genotypes.

Two results derived by Thomas et al. (1994) are relevant here.
The first concerns the probability distribution of the number of
distinct segments shared IBD among a set of relatives, the second
concerns the length of any such shared segment. Consider a set of
individuals all descended from a common ancestor or common
ancestral couple. Let d be the number of meioses that connect
all of these individuals to a common ancestor, and let a be the
number of common ancestors: 1 for a single ancestor, 2 for an
ancestral pair. For instance, the pedigree shown in figure 1 has
d = 15 and a = 2. Let k be the number of chromosomes being
considered and let A be the total number of recombination events
expected over these chromosomes. For example, for a complete
genome scan of the human autosomes k = 22 and A = 35 (Bro-
man et al. 1998). The number of distinct chromosomal regions

Annals of Human Genetics (2008) 72,279-287

shared IBD by all the individuals is approximately distributed as
a Poisson random variable with mean

A+ k
EYEra @

An intuitive derivation of this result is straightforward: each of
the d meioses creates, on average, A junctions, which, with the
chromosomal breakpoints, give a total of d A + k stretches of
contiguous DNA which segregate as a unit, and in a different
way to the adjacent units. For each of these units, the probability
that it is transmitted to all of the descendants is % If there is
a common ancestral pair then there are 4 possible sources for
the IBD segment, but only 2 if there is a single, multiply mated
ancestor. The expected number of IBD segments shared by all
descendants is simply the product of these three terms.

Also, if we assume that the underlying recombinations at each
meiosis occur as independent Poisson processes, the length of
any shared IBD segment is Exponentially distributed with mean
% Morgans. This assumes that we can neglect the effects of trun-
cation due to reaching the ends of chromosomes. These eftects
should be small when d is reasonably large.

Note that the distances are genetic distances so variation in
recombination rates through the genome are irrelevant until we
map to the physical domain. Note also that since the process
marking all junctions is made by overlaying the d independent
processes for each meiosis, departures from the Poisson assump-
tions for the individual processes are diluted in the overlaid pro-
cess. Hence, the effect of interference is minimal, and the above
Poisson and Exponential results are robust to it.

The situation is more complicated when all the individuals
considered are full sibs since it is then possible that they share
more than one chromosome IBD at any particular locus. A simi-
lar complexity occurs more generally in looped pedigrees. While
the general case can be handled both by Donnelly’s approach
and by the simulation methods we describe below, the predom-
inant structure available in our data resource is that addressed by
Thomas et al. (1994) and illustrated in figure 1. We focus on the
simpler case of a single common ancestor, or ancestral couple, for
the remainder of this work. Note that in considering only the
closest common ancestor of the cases, we are assuming that the
effects of other, more distant, relationships are negligible.

Suppose now that we select our set of relatives to be cases for
a disease. If we find that they share at least one segment of DNA
IBD anywhere in the genome, the probability that this occurs
under the hypothesis that the disease status is independent of
genetic events is

(drtk) dr + k

1— ¢ 2= %2‘17*“. (2)

If this is sufficiently small, we would reject the null hypothesis
that they share by chance in favour of the hypothesis that there is
a gene located in the IBD region aftecting the trait. We empha-
size that these probabilities are calculated based on the number
of chromosomes, k, and the total genetic length, A, so that no
further multiple testing correction is required. Note that under
the alternative hypothesis, each of the cases shares the length of
the IBD region due to a shared disease predisposition gene, so the

© 2007 The Authors
Journal compilation © 2007 University College London
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74 76 7|2 712 7|4 7(3 41 5|7
33 312 34 34 33 3|2 23 13
12 111 1|3 13 12 11 21 2|1
2]1 12]1 12]2 12]2 12]3 12]2 22 112

Figure 1. An extended Utah pedigree connecting 8 men with prostate cancer. The affected
individuals are numbered. In the interests of keeping the pedigree unidentifiable, the sexes of
the connecting ancestors are not specified and other relatives are not shown. The numbers

under the affected individuals give the genotypes for 6 micro satellite markers which lie within
the region of 619 SNP markers where 7 of the 8 individuals share IBS. The marker outlined in
a horizontal box lies within the region of 79 SNP markers where all 8 cases share IBS. The

vertical boxes show the reconstructed common micro satellite haplotype.

shared length is equal to the distance to the first junction on either
side, and is hence the sum of two Exponentials or a Gamma(2, %),
which again assumes that chromosome end effects are negligible.
This also gives us some power to detect deviations from random
segregation.

IBS sharing in pedigrees

Unlike GMS where shared IBD segments may be determined,
genome wide SNP scans can only provide information on shared
IBS regions. When individuals share a common allele at a con-
tiguous series of SNPs this may correspond to underlying IBD
or may have occurred by chance, particularly in a run of SNPs
with low minor allele frequency. It may also be due to some
combination of both causes. However, since regions IBD must
also be IBS, IBS regions that cover IBD regions will generally
be longer than those that do not. Thus, we can again test the
null hypothesis that a shared IBS segment is independent of any
underlying genetic influence on the disease if the length of the
segment exceeds some critical value.

As we will show below, IBS sharing closely tracks IBD, so an
alternative approach might be to use IBS sharing to infer IBD

© 2007 The Authors
Journal compilation © 2007 University College London

sharing and then test for a genetic cause using the distributions
described above in section 2, taking into account the uncertainty
in the inference of IBD. It is more straightforward, however, to
test for the genetic cause using the IBS sharing directly, deter-
mining the critical value by simulation.

We define a set of n individuals to be IBS at a genotyped locus
if they all share a common allele. At any locus i we can define
S; as the largest number of individuals who share an allele and
calculate this from the genotype counts (n11, 112, #22) as

S = n — min(nq1, nay). ©)

where 1 and 2 are arbitrary labels for the SNP’ alleles. This
assumes that the data are without error, but allows for missing
values which are, in effect, counted as heterozygotes. Thus, S;
can also be thought of as the largest subset of individuals whose
genotypes, if correctly assayed, do not exclude the possibility that
they share IBD.

Taken individually, these S; have a low amount of information,
however, we can exploit the density of a SNP assay by looking
for runs of consecutive S; which exceed a given threshold.

To assess the extremity of any observed value of S; under the
null hypothesis in a candidate region, we can compare it with
sharing from the rest of the genome, under the assumption that

Annals of Human Genetics (2008) 72,279-287 281
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the majority of the genome behaves under the null hypothesis.
This approach has the advantage that it can be applied even when
the genealogy is not known. Alternatively, when we have pedi-
gree data, we can use a simulation scheme based on the model of
Donnelly (1983) or Thomas et al. (1994), as follows:

1. Each founder chromosome is represented by a unique identi-
fier applied to an interval of (0, I) where [ is the physical length
of the region being simulated in bases. The physical distance
between loci is maintained as in the observed data.

2. Working through each non founder in birth order we allocate
them a chromosome represented by a list of intervals, where
each interval has an identifier indicating the founder chro-
mosome from which it is descended. Each set of intervals is
derived by recombining the parent’s chromosomes, the junc-
tions being determined by a Poisson process with rate A, the
genetic length of the region in Morgans.

3. At each locus, each founder chromosome is allocated an al-
lelic state randomly generated according to specified allele
frequencies. This determines the genotypes of the remainder
of the pedigree.

4. Genotype counts for the cases and S;, or other relevant statis-
tics are computed.

Step 2 above assumes that the recombination rate is constant
over the region simulated. Sex specific recombination rates, large
scale variations such as the tendency for lower recombination rates
near centromeres, and small scale variation due to recombination
hot spots are issues that we plan to address in future work. Step
3 assumes that the loci are in linkage equilibrium. We make an
initial investigation of the eftects of LD below, but this will also
be a focus of future work.

We could at this stage base our statistical tests on either the
number of contiguous loci that are IBS, or by the physical ge-
nomic distance that they span. Some initial investigation showed
that, as expected, there was little difference in effect when the
loci were evenly spaced. However, the simple count of loci was
more robust to gaps in the genetic map such as near the cen-
tromeres. When there were no observed loci that could reveal a
lack of IBD sharing, the length statistics became highly inflated.
For this reason we base our statistical conclusions on the number
of loci in an IBS run, although we report the physical length of
any interesting regions found.

This simulation process has been implemented by the authors
in a Java program. Java was also used to compute the IBS statistics.
All other analysis, including calculating the run length statistics,
was done in the R statistical environment (R Development Core
Team 2004).

Our approach has broad similarities with the haplotype sharing
statistics of Van der Meulen & te Meerman (1997) and Beckmann
et al. (2005) in that it aims to identify excess IBD sharing in
cases. However, we note that their more complicated statistics
require genotyping of close relatives in order to estimate phase,
are based on combining pairwise comparisons, and are applied in
population samples rather than in extended pedigrees. The work
of Bourgain et al. (2001) is more similar to what we present here
as it is applied in a very large extended pedigree, but it again
requires knowing phase and combines pairwise distances.

Annals of Human Genetics (2008) 72,279-287

Example

In a genome wide micro satellite marker linkage scan for
prostate cancer predisposition, reported by Camp et al.
(2005), a single extended pedigree showed a multi point lod
score of 3.1 at chromosome 1p23. This pedigree is shown
in part in figure 1. To examine the utility of our methods,
DNA from 8 affected individuals, shown numbered in the
figure, was submitted to the Center for Inherited Disease
Research (CIDR), and genotyped using the [llumina 110K
panel (http://www.illumina.com).

Our illustrative analysis focuses on using our methods to
confirm the linkage result for 1p. Since we use a subset of
the same pedigree that gave this linkage, it is appropriate to
evaluate the significance of our runs statistics on a genome
wide level, and this forms the first part of our analysis. We
then proceed to evaluate our result as if it were from an
independent study to confirm a localization on chromo-
some arm 1p. This is partially justified by the considerable
literature indicating the presence of a prostate cancer sus-
ceptibility gene on 1p, although the prior evidence near
1p23 (Xu et al. 2003; Witte et al. 2003; Maier et al. 2005)
is weaker than that for loci elsewhere on 1p (Gibbs et al.
1999; Suarez et al. 2000; Matsui et al. 2004). Mainly, how-
ever, we do this for the purpose of illustration as it enables
us to obtain many more simulations and to focus on the
particular structure of this region.

Genome wide analysis

From a total of 109,299 loci, 3,442 were on the sex chro-
mosomes and are not included in this analysis. Figure 2
shows the genome wide results for the lengths and posi-
tions of 38,373 runs for which all 8 cases shared a common
allele, that is, where S; = 8. Among the longest of these
is a run of 79 loci on 1p, spanning 1.96 Mb, which covers
exactly the marker at which the peak lod score of 3.1 was
observed. Haplotypes reconstructed from the micro satel-
lite data are also consistent with this result, however, the
smallest region defined by the micro satellite data is 16.7
Mb, so the SNP data allows us to narrow this considerably.

Using the simulation method described above, we made
10,000 genome wide simulations of the run length statis-
tic. Genetic distances were taken from the Marshfield map
(http://research.marshfieldclinic.org), and allele frequen-
cies were estimated from 52 Utah CEPH controls that are
included as part of the 120 control sample set genotype by
[Nlumina for the same set of SNPs. We found that a run of
79 for S; = 8 was equaled or exceeded only 382 times, giv-
ing an empirical p-value of 0.0382. Although significant,
we consider this a tentative result, particularly in view of
the concerns we discuss below. Nonetheless, it is sufficient
to maintain interest in the region.
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Figure 2. Runs of loci where S; = 8, that is where the
possibility of all 8 cases sharing IBD is not excluded by the SNP
genotypes. Each chromosome is represented by a block of
length proportional to physical size. The bars representing the
runs cover all the bases between the markers in each run. Spaces
within a chromosome correspond to centromeric gaps in the
marker map. At this resolution not all the gaps are large enough
to show up.

It is informative to compare the genome wide p-value
0f 0.0382 for the run of 79 loci with S; = 8 with the prob-
ability from equation 2 that there is a shared IBD region
among the cases. For A = 35,d = 15, a = 2, k = 22 this
is 0.067. Clearly, there were IBD regions simulated that
were not of sufficient length to cover 79 loci or more. This
shows that the p-value reflects power not only from the
implied existence of a shared IBD region, but also from
its length. It also shows that uniform spacing of the SNP
coverage in the assay is important.

In order to allow for the possibility of sporadic incidence
of prostate cancer among the cases, we also looked for runs
where 7 of the 8 cases shared IBS. As can be seen in figure
3 the longest such run was 619 loci long, occurred at 1p23,
and included the 79 loci described above. Moreover, apart
from the first 4 and last 1, the non-sharing individual was
the same one: individual 7. However, although this was by
far the longest of the 12,078 runs of S; > 7 seen in the
whole genome scan, the next longest being only 213, this
result is not statistically significant on a genome wide level
(p-value - 0.0874). This suggests considerable skew in the
distribution of such run lengths.

Four runs where S; = 8 were longer than the 79 ob-
served on 1p. These were runs of 84, 83, 81 and 83 on

© 2007 The Authors
Journal compilation © 2007 University College London

SNP Genotype Analysis in Pedigrees

o
.
©
o
c O -
‘aﬁ‘
c
ko)
. MW.LLMMMWM.W
1 2 3 4 5 6 7 8 9
o
.
©
o
c O -
‘g’ﬁ'
©
owuu bk oiodwadiy
10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 3. Runs of loci where S; > 7, that is where the
possibility of at least 7 of 8 cases sharing IBD is not excluded by
the SNP genotypes. The format is the same as for figure 2.

chromosomes 10, 12, 17 and 22 respectively. These might
also be considered candidate regions for a prostate cancer
predisposition gene. They were surrounded by runs where
S; > 7 of lengths 167, 102, 83 and 85, respectively, thus
none of these is robust to the possibility of a sporadic case.
However, note that it is not the case that a run where all
8 cases share IBD has to be surrounded by a run where
7 of the 8 share: a recombination that occurs early in the
pedigree may cause several cases to stop being IBD with
the majority at the same junction.

Candidate region analysis

Assuming, for the sake of illustration, that prior evidence
for a prostate cancer susceptibility locus on chromosome
arm 1p allows us to restrict attention to this region, we
made 100,000 simulations for the 120 Mb spanning the
5,213 SNP markers here. The genetic distance was taken
as 1.5 Morgans.

In our 100,000 simulations, the longest run of IBS on
chromosome arm 1p for all 8 cases was greater than or equal
to 79 loci only 207 times (empirical p - value = 0.00207).
The longest run where 7 of 8 cases shared exceeded 619
only 482 times (empirical p - value = 0.00482). Figures 4
and 5 show the empirical distribution functions for the IBS
run lengths from which these p-values are calculated. These
plots also show the different distributions of longest IBS run
when there is and is not underlying IBD sharing. The clear
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Figure 4. Empirical distribution functions of run lengths
where all 8 cases share IBS estimated from 100,000 simulations.
The dashed line is the overall distribution, which is a mixture of
the run lengths when there is, or is not, underlying IBD
sharing. These component distributions are shown as dotted and
solid lines respectively. The vertical line at 79 indicates the
observed longest run length for chromosome arm 1p. The
overall distribution is used to assess empirical p-values.
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Figure 5. Empirical distribution functions of run lengths
where 7 out of 8 cases share IBS estimated from 100,000
simulations. The dashed line is the overall distribution, which is
a mixture of the run lengths when there is, or is not, underlying
IBD sharing. These component distributions are shown as
dotted and solid lines respectively. The vertical line at 619
indicates the observed longest run length for chromosome arm
1p. The overall distribution is used to assess empirical p-values.
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Figure 7. Length of the longest run of loci IBD in 7 of 8 cases
in 100,000 simulations of segregation of chromosome arm 1p,
against the longest run of loci IBS for 7 of 8 cases. The
horizontal line shows the observed value of 619 loci. All points
must lie on or above the diagonal line.

difference between when there is and is not IBD sharing
illustrates the considerable power in IBS runs for detecting
IBD. The very close relationship between the longest runs
of IBS and IBD sharing is also shown in figures 6 and 7
for all 8 cases and for 7 of 8 cases, respectively. Based on
the simulations, an IBD region of any length, common to
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all 8 cases, occurred on chromosome 1p with probability
0.00276, closely matching the theoretical value of 0.00287
derived from equation 2 with d = 15,0 =2, A = 1.5, k
= 1. In the simulations in which no IBD region was shared
by all 8 cases the longest run of loci at which S; = 8 was
106. An IBD region common to 7 of the 8 cases sharing
occurred with probability only 0.03452 as estimated by
simulation. In the simulations in which no 7 cases shared
an IBD region the longest run of loci at which S; > 7
was 491. Thus, it is clear both that IBS runs closely track
the length of IBD regions, and that in extended pedigrees,
long IBS runs occur only rarely without underlying IBD.

Conclusion

There is clear evidence in our data for a shared IBD region
in our 8 cases, however, the consequent conclusion that this
region must contain a prostate cancer susceptibility gene is
marginal. The pedigree we have been able to collect is of a
size suitable for a candidate region or confirmatory study.
A de novo genome wide scan requires larger pedigrees,
as indicated by Thomas et al. (1994) who recommended a
pedigree linked by more than 20 meioses. We are currently
ascertaining and genotyping prostate cancer pedigrees in
excess of this size in our follow up studies.

Discussion

This approach to predisposition gene localization is new,
and there are several issues to address in subsequent work.
Foremost of these is LD, as correlations between alleles at
proximal loci will increase run lengths under the null hy-
pothesis of no genetic effect. To make an initial evaluation
of the effects of LD, we analyzed genotype data for 60
unrelated CEPH Utah individuals from HapMap for the
chromosome 1p region of interest. Using a similar overall
distribution of r* statistics as that found among the unre-
lated CEPH Utah individuals, we created a model of corre-
lated alleles which were distributed to the founders in the
simulation analysis. We found that the empirical p-value
for a shared run length of 79 loci IBS for all 8 cases in-
creased greatly from 0.00207 to 0.20793, but the p-value
for the shared run length of 619 loci IBS for 7 out of 8
cases increased only from 0.00482 to 0.00638. The differ-
ence in effect is presumably because 619 is in the upper tail
of the length distribution even when there is IBD sharing
among 7 from 8 cases. Further work is required to include
more appropriate and realistic LD models, such as those of
Griffiths & Marjoram (1996), Morton & Collins (2002) or
Thomas & Camp (2004), in the simulation. In the same
vein, estimates of variable recombination rates need to be
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accounted for by a non linear translation from the genetic
to physical domains.

When subsets of the cases are considered, the number
of meioses lost can vary. In our example of IBS sharing
among any 7 out of 8 cases compared to sharing among all
8 cases, either one or two meioses were lost, that is, there
were 13 or 14 meioses in the reduced pedigree compared
to the original 15. In a single averaged statistic, as used here,
there will be more statistical power to detect subsets which
retain fewer meioses. In other data sets where there are
bigger differences in the number of meioses lost, a statistic
T}, say, equal to the largest number of meioses separating
a set of cases who share a common allele at locus i will
be a better basis for hypothesis testing, although slightly
more involved to calculate. Under perfect observation of
IBD regions and with no sporadic cases, Thomas et al.
(1994) showed that a single pedigree with 21 meioses was
enough to detect linkage with a genome wide scan. In
order to allow for observed IBS instead of IBD, and for
sporadic cases reducing the number of meioses, pedigrees
with meiosis count d in the 25 to 30 range are probably
needed.

Much of the appeal of this approach is that the power
available in a single pedigree obviates the need to consider
genetic heterogeneity of the phenotype. However, it is also
straightforward to combine data from independent pedi-
grees by finding regions that co-segregate in them. Note
that this does not lead to a test for allelic association unless
we specify that the alleles shared in the different pedigrees
are the same.

Given the structure of the pedigree in figure 1, it is im-
possible to detect genotyping errors in a diallelic marker
by looking for violations of Mendelian segregation. Our
analysis should, however, be extended to allow for error
because a single misclassification of a heterozygote as a
homozygote can prematurely end a run of IBS sharing.
Requiring multiple mismatches before ending a run is one
way, alternatively, we can find statistics based on the locus
by locus posterior distributions for the inheritance states,
which are tractable by the usual peeling method (Cannings
et al. 1978). Finding runs of high values can be accom-
plished using, for example, cumulative sum charts.

Representative population allele frequency estimates are
essential for the simulation analysis. In this study, the CEPH
Utah individuals genotyped on the same panel of markers
as our Utah prostate cancer pedigree fortuitously provided
representative population frequency estimates. However,
for studies in other populations it may be necessary to use
allele frequency estimates from the pedigrees themselves.
To explore the eftects of this, we repeated our analysis with
allele frequencies estimated from the pedigree and a single
parent offspring triplet additionally genotyped by CIDR as
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a control, using the naive unbiased estimator. The eftects
of this change in allele frequency estimates were minimal.
The p-value for the 79 loci shared by all 8 cases changed to
0.00202 while that for the 619 loci shared by 7 of 8 became
0.00511. Again, further work is needed to better quantify
the sensitivity to allele frequency estimates.

The central question we have considered here is whether
we can infer a shared region containing a predisposition
gene from unexpectedly long runs of IBS sharing among
distantly related aftected individuals. Although our empir-
ical tests assess them jointly, this breaks down into two
separable issues. The first issue is whether IBS sharing is
sufficient to conclude that there must be underlying IBD
sharing. Figures 6 and 7 clearly show that in our simula-
tions IBS runs closely match the underlying IBD, and the
evenness of coverage, polymorphic content and quality of
assay of the SNP panel are certainly adequate to make this
analysis feasible. The clear difference between distribution
of run length when there is, and is not, underlying IBD
sharing demonstrates the power to detect IBD from IBS.
Given that we can infer IBD sharing, the second issue is
whether it is sufficiently unexpected under random segre-
gation that we can conclude such sharing must be due to
an underlying genetic cause that resulted in the selection
of the cases. This is where the power of extended pedi-
grees is most important. While at first glance it appears
that analysis using sets of relatives introduces unnecessary
complexity, it is in the balance between the two central
issues that the elegance of the extended pedigree design is
apparent. The length of any region shared IBD by a set of
relatives decreases slowly, o (%), as d, the number of meioses
connecting them, increases. Thus, there is a relatively large
target to be covered by the SNPs in the assay. Conversely,
the probability under random segregation that there ex-
ists any shared IBD region decreases very quickly, 0(2%),
hence, for a sufficiently informative pedigree any detected
sharing is likely to be significant. In short: big target, little
noise.
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Abstract

We consider estimating graphical models from samples of discrete multivariate data when
the underlying conditional independence graph is assumed to be an interval graph. We
show that this restriction considerably reduces the computational time taken to estimate
a model. A further restriction requiring the intervals to cover specified points is also
considered and shown to have distinct advantages for modeling association between alleles

at genetic loci.
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1 Introduction

When the joint distribution of a set of random variables implies many independences or con-
ditional independences between subsets of the variables, it can often be usefully considered
as a graphical model. A graphical model has two elements: a conditional independence, or
Markov graph, G, that represents the structure of the relationships between the variables,

and a set of parameters, M. If the distribution of X7, ... X, factorizes as

P(Xy,...X,) = J[(T:) where T C {X;,...X,})

the vertices of the Markov graph are the variables Xi, ... X,, with edges connecting pairs of
variables if they appear together in one or more of the 7;. While the structure of a graphical
model is often apparent from modeling assumptions, it is also possible to estimate it from
a set of multivariate observations. This was originally developed by Hgjsgaard & Thiesson
(1995) with more recent work by Giudici & Green (1999) and Thomas & Camp (2004) on
continuous and discrete variables respectively. In all this work models are restricted to the
class of decomposable graphical models that are well behaved, tractable and flexible. This
class is defined and the main features of estimation methods are described below. The
Markov graph of a decomposable model is a decomposable graph. Both Giudici & Green
(1999) and Thomas & Camp (2004) use stochastic search methods for finding an optimal
model, or Markov chain Monte Carlo (MCMC) methods for sampling from the posterior
distribution of models. In each of these cases it is necessary, given a decomposable graph
G to propose a new graph G’ and accept or reject it as the new incumbent according to
appropriate probabilities. If G’ is decomposable, then Giudici & Green (1999) have shown
that the value of the target function for the proposed model can be found very quickly,
in time independent of the size of the graph. However, it is not straightforward to ensure
the decomposability of G’ in advance so that it is necessary to check for this condition and
reject graphs that are not decomposable. In this work we restrict the graphs considered to
those in a more manageable subclass: the class of interval graphs.

A graph is an interval graph if its vertices can be made to correspond to sub intervals
of the real line with pairs of vertices joined by an edge if and only if their corresponding
intervals overlap. As Golumbic (1980) shows, all interval graphs are decomposable. If we
now work with a set of intervals, one for each of the random variables in our model, it is
easy to perturb these by moving and resizing them and yet be sure to stay within the class
of interval, and hence of decomposable, graphs. If, furthermore, we find that the restriction

to the set of interval graphs does not seriously affect our ability to accurately model the



data, then we have a simpler and more computationally efficient estimation method. That
is the idea pursued in this work.

Although this idea is developed in the general case, much of the motivation comes from
the problem of modeling allelic association in genetics. The specific alleles an individual
has at different genetic loci are, in general, not independent. Correlations can be caused
by selection and close relationships between individuals, but the main source is linkage
disequilibrium, or LD, which is the tendency for alleles at loci that are near to each other
on a chromosome to have been inherited together over the generations (Ott 1985). On
average, according to Malecot’s model, pairwise LD decreases as the distance between loci
increases (Morton 2002), however, on a fine scale, more complex patterns appear. Thomas
& Camp (2004), Thomas (2005) and Thomas (2007) developed the methods of Hgjsgaard &
Thiesson (1995) to estimate graphical models for the joint distribution of alleles at genetic
loci in allelic association, and showed that, at least when dealing with small genomic regions,
these gave quite different results to fitting low order Markov models. Because of the linear
arrangement of genetic loci along a chromosome, and the expectation that LD decreases
with distance, modeling with interval graphs has clear intuitive appeal. Most statistical
geneticists have some informal notion of the extent of LD around a locus. In what follows,
therefore, we consider not only the complete class of interval graphs which may have general
applications, but also a more constrained sub class which will be appropriate when there

is some reason to expect that a linear arrangement of the variables affects correlation.

2 Methods

2.1 Estimating graphical models

Consider a graph G = G(V, E) with vertices V' and edges E. A subset of vertices U C V
defines an induced subgraph of G' which contains all the vertices U and any edges in E that
connect vertices in U. A subgraph induced by U C V' is complete if all pairs of vertices in
U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not
a subgraph of any other complete subgraph.

A graph G is decomposable if and only if the set of cliques of G can be ordered as
(Cy,Cy,...,C.) so that

it S; = C;n U C; then S; C O} for some k > i. (1)

j=i+1



This is called the running intersection property. This condition is equivalent to requiring
that the graph is triangulated, or chorded, (Golumbic 1980), that is, it contains no un-
chorded cycles of 4 or more vertices. The sets S; are called the separators of the graph,
and although several orderings typically give the running intersection property the cliques
and separators are uniquely determined by the graph structure.

A graphical model with a decomposable Markov graph is a decomposable model and
joint distribution of the variables in the model can be decomposed in terms of the marginal

distributions of the cliques and separators:

P(C;)
P(S;)

P(Xy,... X)) =1

)

(2)

For discrete variables these marginals are simple multinomials, and so, given a set of obser-
vations, it is straightforward to calculate maximum likelihood estimators of the parameters,
the maximized likelihood, and the degrees of freedom. Multivariate Gaussians are similarly
tractable in the continuous case. The decomposability then allows us to combine these to

obtain the overall maximized log likelihood and degrees of freedom:
log L(G) = Y log L(C;) — Y log L(S;) and df(G) = S_df(Cy) — S_df(Sy).  (3)

Model estimation can then be based on optimizing a penalized likelihood information

criterion

I1C(G) = log LG — adf(G) (4)

where « is some arbitrary constant. Hgjsgaard & Thiesson (1995) use a deterministic opti-
mization while Giudici & Green (1999) and Thomas & Camp (2004) use stochastic search
or sampling methods. The stochastic methods require that an incumbent decomposable
graph G is perturbed, for example by adding or deleting an edge, to give a proposed new
graph G'. If G’ is not decomposable it is immediately discarded, otherwise it is accepted
or rejected with the appropriate probabilities for Metropolis (Metropolis et al. 1953) or
Hastings (Hastings 1970) sampling, or simulated annealing optimization (Kirkpatrick et al.
1982). Giudici & Green (1999) give very fast methods for evaluating the rejection proba-
bility that do not increase with the number of variables being considered. Their algorithm
for determining whether GG’ is decomposable can take order n time in the worst case, but
in practice is very quick. However, the for large graphs the probability that a random per-
turbation to G will result in decomposable G’ is small. For instance if we consider adding

or subtracting an edge there are n(n — 1)/2 pairs of vertices to choose from, whereas,



intuitively we would expect O(n) of these flips to result in a decomposable proposal.

2.2 Interval graphs

A graph is an interval graph if its vertices can be made to correspond to intervals of the
real line and its edges connect pairs of vertices if and only if the corresponding intervals
overlap. This is illustrated in Figure 1. Intuitively, an interval graph would be expected
to be long and thin, and this is the case: these notions can be formalized in terms of the
longest path in the graph and how far a vertex can be from this path (Golumbic 1980).
Moreover, an interval graph is always decomposable. Thus, if we restrict our search for
decomposable models to those with interval Markov graphs, we can work with the more
tractable interval representations of the graphs instead of the graphs themselves. Whatever
perturbations to the solution then involve, for example, moving an interval or changing its
length or more complex manipulations involving multiple intervals, the result will always
give an interval graph and a decomposable model. The benefits of this can be twofold.
First, the perturbations can be more radical than simply adding or deleting an edge and
so can potentially give better mixing properties for the sampler or optimizer. Second, we
do not need to waste time proposing non-decomposable solutions.

It should be recognized, however, that we are sampling interval sets, not graphs directly.
Since interval graphs can be represented as interval sets in different numbers of ways,
this means that those graphs with more interval set representations will be over sampled,
and those with fewer will be under sampled. While this might be accounted for in the
Metropolis or Hastings rejection probability, we will assume that this effect is small when

we are sampling graphs of similar probability, and justify this empirically below.

2.3 Efficient implementation

In order to take advantage of this idea, we need two things. One is to have a data structure
that allows interval sets to be managed and queried efficiently. The other is to be able to
evaluate the maximized log likelihood and degrees of freedom of a proposed model quickly,
and preferably in time that does not depend on the size of the problem.

The first issue is resolved by using a standard data structure called an interval tree
(de Berg et al. 2000). The root of the tree is associated with a fixed point, typically the
mid point of a finite region that contains all the intervals. This root node stores a list of
the intervals that cover the fixed point. All intervals that lie completely to the left of the
point are delegated to daughter node whose fixed point is the mid point of the left region,



and similarly for intervals who lie completely to the right of the fixed point. The structure
is built up recursively in this way until all intervals are stored in a list at one of the nodes
in the tree. This structure allows addition of new intervals, deletion of existing intervals,
querying for intervals that cover a particular point, and querying for intervals that overlap
with a given interval to be done in O(logn) time.

To address the second issue of efficient likelihood recalculation, we first note that the
set of intervals that cover any point on the line correspond to a complete cutset of the
graph (Golumbic 1980). A set of vertices K is a cutset if partitions the vertices of G into
L, M and K itself such that all paths in G from a vertex in L to a vertex in M must pass
through a vertex in K. The separators S; of G are all complete cutsets, in fact, all the
minimal complete cutsets. The complete cutsets defined by points on the line will include
these separators and also complete cutsets that are not minimal. For any graphical, model
if K is a complete cutset then the variables L are conditionally independent of M given
the value of K. That is

P(LK)P(MK)

P(KLM) = P(L|K)P(M|K)P(K) = PR (5)

If we now consider a sub region (z,y) of the line we can define three induced subgraphs
of G: A, B and D the subgraphs induced by the intervals that overlap with (—oo, x), (y, 00)
and (z,y) respectively, so that AN D and B N D will be the complete cutsets defined by
the intervals that cover the points x and y respectively. This is illustrated in Figure 2. The

sub region (z,y) thus defines conditional independences that can be expressed as

P(A)P(B)P(D)

P(ABD) = P(AND)P(BN D) ©)

If we now alter the graph G to make G’ in such a way that only intervals that lie
completely in (x,y) are changed, D may change to D’ but A and B will not be affected.
Moreover, AND'=AND and BN D'= BN D. Hence,

P(G")  P(A)P(B)P(D') P(AND)P(BND) P(D) -
P(G) P(AND)P(BND) x P(A)P(B)P(D)  P(D) (™)

In this way, the change in the global joint probability can be evaluated very quickly from
local changes.

As with equation 2, this extends to allow us to quickly evaluate changes in the maxi-
mized log likelihood and degrees of freedom, and hence the information criterion IC(G").

So, for perturbations of G that involve changing only one interval, we need only consider
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the graph corresponding to the portions of the line that lie under the interval before it is
changed and after it is changed. Hence, we can very efficiently evaluate the target function
for the proposed graph G'.

In our implementation of this scheme, intervals are initially allocated with midpoints
evenly distributed between 0 and 1, with small lengths so that no intervals overlap. Per-
turbations consist of randomly reallocating the midpoint uniformly at random in (0,1), or
the length from an exponential distribution, or both midpoint and length of a randomly

chosen interval.

2.4 Constrained interval graphs

When the variables being modeled can be positioned in a linear arrangement it may be
appropriate to reflect this in the structure of the interval graph. For example, genetic loci
have physical positions along a chromosome and we strongly expect the greatest correlations
to be between alleles at loci that are nearest each other. In this case we can require the
interval that represents a particular locus to cover its physical location. We also alter the
definition of the graph to require intervals to overlap by some minimal amount in order to
add an edge between the corresponding vertices. Any vertex corresponding to an interval of
length less than this minimal amount will therefore not be connected to any other vertices.
This is illustrated in Figure 3. This extra condition gives some flexibility to the model.
For example, with reference to Figure 3, suppose that locus 2 appears from the data to be
independent of all other loci, but that loci 1 and 3, and 3 and 4 are very strongly correlated.
Without this final requirement, the interval structure would force an edge between 2 and
3 making the model more complex than necessary. Such a situation may often arise with
genetic loci where the frequency of the less frequent allele is very low. It is trivial to show
that requiring a minimal overlap still gives an interval graph.

In this case the intervals are initially set as for the general interval graph. Perturbations
involve randomly extending or reducing the spans to each side of the required fixed point
by amounts generated from and exponential distribution.

This approach can also be used if an ordering of the variables is know but that distances
are not. In this case we can assign the variables to arbitrary evenly spaced points along
the line.



2.5 Programs

General and constrained interval graph searches have been incorporated into the author’s
HapGraph program (Thomas & Camp 2004) which can be used both as a generic graph-
ical model estimator, or for the specific case of modeling allelic association. This lat-
ter case requires an extra step to account for observing unordered genotypes as opposed
to complete phase known haplotypes. Both versions allow for missing data by random
imputation. Full details of the methods are given by Thomas (2005). The program
is written completely in Java thus is platform independent, and can be obtained from

http://bioinformatics.med.utah.edu/~alun.



3 Results

We illustrate the effects of the model restrictions described here using data for subsets of
the single nucleotide polymorphisms on chromosome 1 genotyped in the sample of Yoruba
people from Ibadan, Nigeria by the HapMap project (The International HapMap Consor-
tium 2005). This sample is conventionally abbreviated as YRI, and the data was from build
36 dated 2 May 2007. The loci that were monomorphic in this sample were not considered
in these analyses. We used subsets of the first 20,000 remaining loci in what follows.

In order to first consider the computational effects of model restrictions we ran three
versions of the HapGraph program. The first fitted a general decomposable graph using the
rejection method of Giudici & Green (1999), which is the standard form of the program.
The other two implemented a general interval graph and a constrained interval graph search
as described above. HapGraph’s graphical user interface that shows the graph as it is being
updated was not used so as to avoid incorporating the processor time needed for rendering
in the comparisons. Figure 4 shows the times taken by each of the 3 methods to perform
one million Metropolis updates of the graph for data on sets of between 20 and 20,000 loci.
Figure 5 plots the largest penalized log likelihood score seen in each of the runs. All the
programs were run on the author’s laptop computer which has a 2.33 GHz dual core central
processing unit running Red Hat Linux and Java version 1.5.

For the decomposable graph search we recorded both the number of random propos-
als that resulted in a decomposable graph, and the number of these proposals that were
accepted based on the usual Metropolis probabilities. For the interval graph searches we
recorded the number of proposed new interval configurations that were accepted and also
the number of these that resulted in a different implied graph. These counts are shown in
Figure 6. For all the versions of the program, the starting configuration used was the trivial
graph, that is the graph with a vertex for each locus but no edges. Thus, in the early stages
of the search the graph is very sparse and almost all randomly chosen pairs of vertices can
be legitimately connected to give a decomposable model. Also, in the early stages almost
any change will tend to be accepted. In order to check the performance of the methods
closer to the equilibrium state we also recorded these counts in the last 100,000 (10%) of
iterations. These are also shown in Figure 6.

We then compared the haplotype frequencies implied by models optimized for each of the
three classes of graph using simulated annealing. To avoid comparing very small frequencies
we considered only haplotypes for the first 20 polymorphic loci on chromosome 1. Figure
7 gives pairwise scatter plots of the frequencies estimated under the general decomposable

models against those seen for general and constrained interval graphs. As an external



reference we also show the haplotype frequencies estimated using the FASTPHASE program
(Scheet & Stephens 2006), those estimated under the assumption of linkage equilibrium,
and those estimated under the assumption that dependence is limited to a first order
Markov chain and a fifth order Markov chain.
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4 Discussion

In absolute terms, as shown in Figure 4, the computational performances for the 3 methods
are similar. In the long run, the time required is quadratic although for up to about
10,000 variables performance is very close to linear. This difference is probably due to the
increasing amounts of work done by the Java garbage collector to reclaim heap space. Even
for the substantial numbers of loci used here, none of the methods takes prohibitive time
or storage.

Although for below around 15,000 loci each of the interval graph methods takes more
absolute time than the decomposable graph method, the amount of work done is substan-
tially more as shown by Figure 6. Figures 6 (b) and (c) show that around 25% of updates for
the interval graph methods are accepted, of which 5% to 10% give rise to new graphs. For
the decomposable graph method the percentage of proposals accepted decreases rapidly,
see Figure 6 (a). The difference is far more marked in the last 100,000 iterations when the
effect of initial conditions is minimized. Of the last 100,000 times that a random pair of
20,000 loci were selected, in only 70 cases could the pair be either disconnected, if they
were previously connected, or connected, if they were previously disconnected, so that the
resulting graph was decomposable: clearly the rejection method becomes very inefficient,
see Figure 6 (d). On the other hand for constrained interval graphs, the acceptance rate
settles down very quickly at about 25%, and the accepted interval configurations that give
a new graph settles at about 5%, Figure 6 (f).

The acceptance rate for general interval graphs actually increases with the number of
loci, even for the last 100,000 iterations. However, this is likely to be due to long term
residual effects of initial conditions: in effect, for general interval graphs on large numbers
of vertices the Markov chain is not mixing well. This poor mixing is also reflected in Figure
5. Since constrained interval graphs are a subset of general interval graphs which are a
subset of decomposable graphs, the actual optimal values of the penalized log likelihood
scores must increase through that sequence of inclusion. However, the maxima actually
found reverse that order showing that the smaller space of constrained interval graphs is
far more efficiently searched than its supersets.

The statistical effects of model subclassing are shown in Figure 7. For this example the
differences between haplotype frequencies estimated from models in each of the three classes
of graphs are very similar, see Figure 7 (a) and (b). The results from Scheet & Stephens
(2006) FASTPHASE method are also similar, Figure 7 (c¢). However, frequencies under
linkage equilibrium or simple Markov dependence, even up to fifth order, show marked

differences with far more points along or close to the axes of Figures 7 (d), (e) and (f).

11



The distribution of distances between the 20 loci used here is quite skewed, with a mean of
37.97 kilo bases but median of only 2.33 kilo bases. At this level of genetic resolution the
more sophisticated method for modeling LD are beneficial. On sparser maps this might
not be the case.

Overall, therefore, there are clear computational benefits and little costs in terms of
model flexibility to using interval graphs. In particular, in the context of LD modeling,
constrained interval graphs have considerable practical advantages. As a final comment,
note that the localization of the interactions implied in the constrained interval graph
method means that loci sufficiently far apart can be considered separately. Thus, although
not exploited by the programs described here, this would allow an implementation that

scales linearly with the number of loci and be feasible on genome wide level.
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Figure 1: An interval set and its corresponding interval graph.
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Figure 2: A sub region partitions the interval graph.
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Figure 3: An interval graph constrained by the physical location of genetic loci.
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Figure 4: The computer times required for one million MCMC iterations by number of
genetic loci when the search is over general decomposable graphs, general interval graphs
and constrained interval graphs.
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Figure 5: The largest penalized log likelihood score seen in a sample of 1,000,000 MCMC
simulations by number of loci.
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Figure 6: The numbers of accepted proposals in all 1,000,000 MCMC simulations and in
the final 100,000 simulations under the three classes of graphs considered by number of
loci, shown as percentages.
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Figure 7: Haplotype frequencies for the first 20 loci estimated for the YRI data for an
optimized model with general decomposable graph compared with models with general in-
terval and constrained interval graphs. Also compared are haplotype frequencies estimated
using FASTPHASE, and those estimated under linkage equilibrium, and under first and
fifth order Markov dependence.
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1 Introduction

Thomas et al. (2008) introduced a method they called genetic mapping by shared genomic
segments. This is based on the availability of dense genotyping assays carried out on sets
of related individuals who have a genetic disease. At each marker the largest number
of individuals who share an allele is calculated. Then, excessively long runs of loci for
which all individuals share an allele are taken as evidence that there is an underlying ge-
nomic segment inherited identically by descent from a common ancestor. Such a region
then becomes a candidate for containing a gene with a mutation causing susceptibility to
the disease. Runs of sharing among large subsets of individuals can also be considered.
The statistical significance of long shared genomic segments can be assessed by simulation
involving multi locus gene drop methods. Similar analyses can also be performed on popu-
lation samples, although the null distribution of shared segments lengths will be different.
The same idea has also been published by Leibon et al. (2008) who defined the same statis-
tic, but evaluated significance by extending methods derived by Miyazawa et al. (2007) for
evaluating the distribution of regions shared homozygously in a set of individuals, to the
case of heterozygous sharing.

Both the gene drop approach of Thomas et al. (2008) and the distributions derived by
Leibon et al. (2008) assume that the genetic loci are in linkage equilibrium. This is simpli-
fying assumption that is clearly inappropriate for dense single nucleotide polymorphism, or
SNP, maps, as the above authors point out. Linkage disequilibrium will likely increase the
lengths of random shared segments under the null distribution of no genetic cause for the
disease. In this paper we describe two long shared segments seen on chromosomes 5 and 18
that appear to be statistical anomalies and which emphasize the importance of using the
correct null distribution. These were originally detected in a set of individuals with prostate
cancer from extended Utah pedigrees, giving the initial impression that genes for prostate
cancer might be found in these regions. However, analysis of a set of melanoma cases
found precisely the same segments, and eventually these were also seen in a set of 60 un-
related European controls genotyped by the HapMap project (The International HapMap
Consortium 2005).

In what follows we briefly review the methods of Thomas et al. (2008), describe the
data analyzed and present the results of the analyses. We then discuss the likely causes of

the anomalies.



2 Methods and materials

Shared genomic segments

Consider a genotyping assay of s SNPs carried out on n individuals. At each marker
we count the numbers of individuals with each genotype mii, ni2 and ngs such that
ny1 + N2 + nee < n, with inequality when there are missing genotypes. Define S; =
n — min (ny1,n22), which is the largest number of individuals who can possibly share an
allele: any missing individuals are effectively treated as heterozygotes. We then compute
the lengths of runs of loci at which S; > t for some chosen values of the threshold ¢. R;(t)
is then defined for each locus as the length of the longest run including the locus for which
the S;s are at least t. The figures given below plot the physical location of each locus ¢
against R;(t) for some values of ¢, in these cases either t =n or t =n — 1.

The statistical significance of the longest run seen in the data, max; R;(t), can be
evaluated by a gene drop simulation in which we allocate alleles to founders at random
and simulate their descent to the non founders by simulating the inheritance states at each
locus. Note that the inheritance states at adjacent loci are dependent with this dependence
specified by the recombination fraction, or genetic distance, between them.

In this analysis, however, we did not make simulations partly because the usual assump-
tion of linkage equilibrium for the founder alleles is false for maps of the density we used,
and partly because the results stand out so clearly from the background noise in several

data sets.

Case and control individuals

Using the Illumina 550K assay of over half a million SNP loci, we genotyped two sets of
familial disease clusters, one of prostate cancer and one of melanoma. The prostate cancer
set consisted of 2 familial clusters, the first of 8 distantly related cases connected by 27
meioses to a married pair of ancestors, the second of 21 distantly related cases connected
by 68 meioses to an common ancestral pair. The melanoma set had more cases, 90, but
distributed in 21 smaller pedigrees. Sheared segment analyses were performed on the
individual pedigrees, as well as the combined disease sets, however, only the data for the
combined disease sets are relevant and presented below.

As controls for these disease cases we took the 60 parents from the 30 parent-offspring
trios of European origin genotyped by the HapMap project. These samples, conventionally
denoted as CEU, were originally collected by the Centre d’Etude du Polimorphisme Humain
in Utah in 1980, and so should be well matched with our Utah cases. We found that



over 95% of the autosomal markers genotyped in our assay were also genotyped in these
individuals. The results presented below are for this intersection of 7?7 markers. As well
as the shared segment analysis, we followed up by using the CEU data to compute the
usual measure of heterozygosity at each marker, given by 1 — ]3?71 - ]52272 where p;; and p; »
are the maximum likelihood estimates of the frequencies alleles 1 and 2 at the ¢th locus.
We also computed the usual Chi-squared test statistic for Hardy-Weinberg equilibrium at
each marker (7). Linkage disequilibrium in the the anomalous regions was evaluated using
the CEU data and the Haploview software (Barrett et al. 2004) with the following criteria:
ignore pairwise comparisons of markers more than 500Kb apart, Hardy-Weinberg p-value
cutoff of 0.001, minimum minor allele frequency 0.001.

Finally, in order to assess whether the results seen were specific to Europeans, we
performed shared segment analyses on the HapMap data for the 60 parents of the 30
trios from the Yoruba population from Ibadan Nigeria denoted by YRI, the 45 unrelated
Chinese individuals from Beijing denoted CHB, and the 45 unrelated Japanese individuals
from Tokyo denoted JPT.



3 Results

Figure 1 gives the plots of the runs where (a) all 29 prostate cancer cases, (b) all 90
melanoma cases, and (c) all 119 combined cases share an allele. For each of the diseases
the longest runs are at 5q22.1 and 18q22.1, and as can be seen from the combined plot
these regions correspond exactly. The shared segment on chromosome 5 spans 70 markers
from base positions 109,641,683 to 110,171,067, a length of 529 Kb. That on chromosome
5 spans 55 markers and is 107 Kb in length from base positions 64,802,946 to 64,909,997.

Figure 2 gives the runs where (a) all of the 60 CEU individuals, and (b) 59 of the 60
CEU individuals and (c) all 60 YRI individuals, share an allele. The first figure shows that
there is again sharing of the segment on chromosome 18, but, the sharing is not seen in
all 60 individuals at chromosome 5. However, there are two longer than average runs of
sharing adjacent to each other at 5q22.1, and, as the second figure shows, if we relax the
criterion to require all but one of the individuals to share then the region on chromosome
5 again stands out. The non-sharing individual has a miss match at only one locus, which
may be a true miss match or possibly a genotyping error.

Figure 3 gives the runs where (a) all 45 CHB, (b) all 45 HapMap JPT, (c) all 90
combined CHB and JPT individuals share an allele.

Figure 4 gives the distribution of heterozygosity scores across the whole genome com-
pared with the distribution of scores seen in the anomalous regions on chromosomes 5 and
18. Figure 5 similarly shows the distributions of Hardy-Weinberg test statistics over the
whole genome and also at the anomalous regions. Finally figures 6 and 7 give plots of the
strength of pairwise linkage disequilibrium scores between the markers in an around the

regions on chromosome 5 and 18.



4 Discussion

The existence of two such extreme outliers in the otherwise rather even distribution of
shared genomic segments in European case and control data is quite striking. Note also that
the sharing in these regions is heterozygous, that is, that only one chromosome consistently
appears to be shared. There are heterozygous genotypes observed at loci over both regions
in several individuals.

The region at 18q22.1 is the shorter segment and seems to be well explained by its
nature as a linkage disequilibrium block, or recombination cold spot, and the low level of
heterozygosity of the markers involved. This emphasizes the importance of incorporating a
linkage disequilibrium model for the founder alleles allocated in any gene drop simulation
to evaluate the significance of observed runs of allele sharing. The far shorter run lengths
seen in the 60 YRI samples, figure 2(c), compared with those seen in the 60 CEU samples,
figure 2(a), presumably reflect the lower level of linkage disequilibrium and higher level of
heterozygosity seen in African populations compared with others. Again, this emphasizes
the need for appropriate modeling of population haplotypes.

The 5g22.1 region, on the other hand, is longer, has more heterozygosity, does not
have particularly strong linkage disequilibrium structure, and is therefore more difficult
to explain. However, Redon et al. (2006) reported a copy number variant called cnp460
between 109,669,760 and 110,180,038 as a result of SNP and BAC micro array analysis of
HapMap data. This almost exactly matches the anomalous shared segment. While cnp460
is reported as a copy number variation with unknown direction, either gain or loss, the gain
of another copy of this region would explain our finding. We note that in order to end a
run of sharing, we need to observe two individuals with opposite homozygous genotypes.
Thus, the probability of ending a run is mostly dependent on that of observing a rare
homozygote. If an additional copy of the region exits then the probability of observing an
apparent homozygote decreases from p3 to p3 if inheritance of the other copy is independent,
and would be far less if there exists an allele with two imperfect copies in tandem. It is
likely that such an allele is common in the European samples, but not in the African or

Asian ones.
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Figure 1: Plots of run lengths where (a) all 29 prostate cancer samples, (b) all 90 melanoma
samples, (c¢) all 119 combined prostate and melanoma samples share alleles
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Figure 2: Plots of run lengths where (a) all 60 CEU samples, (b) 59 from 60 CEU samples,
(c) all 60 YRI samples share alleles
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Figure 3: Plots of run lengths where (a) all 45 CEU samples, (b) all 45 JPT samples, (c)
all 90 combined CHB and JPT samples share alleles
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Figure 4: The distribution of locus heterozygosity scores seen throughout the genome
compared with the values seen in the 5q22.1 and 18q22.1 regions
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Figure 5: The distribution of locus Hardy-Weinberg test scores seen throughout the genome
compared with the values seen in the 5q22.1 and 18q22.1 regions
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Figure 6: Linkage disequilibrium structure in and around the chromosome 5 region. The
expanded section corresponds to the region of allele sharing. The darker spots indicate
high pairwise linkage disequilibrium

13



Figure 7: Linkage disequilibrium structure in and around the chromosome 18 region. The
expanded section corresponds to the region of allele sharing. The darker spots indicate
high pairwise linkage disequilibrium
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